Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds.
نویسندگان
چکیده
Gaucher's disease (GD) is caused by mutations in the GBA1 gene, which encodes acid-β-glucosidase, an enzyme involved in the degradation of complex sphingolipids. While the non-neuronopathic aspects of the disease can be treated with enzyme replacement therapy (ERT), the early-onset neuronopathic form currently lacks therapeutic options and is lethal. We have developed an induced pluripotent stem cell (iPSc) model of neuronopathic GD. Dermal fibroblasts of a patient with a P.[LEU444PRO];[GLY202ARG] genotype were transfected with a loxP-flanked polycistronic reprogramming cassette consisting of Oct4, Sox2, Klf4 and c-Myc and iPSc lines derived. A non-integrative lentiviral vector expressing Cre recombinase was used to eliminate the reprogramming cassette from the reprogrammed cells. Our GD iPSc express pluripotent markers, differentiate into the three germ layers, form teratomas, have a normal karyotype and show the same mutations and low acid-β-glucosidase activity as the original fibroblasts they were derived from. We have differentiated them efficiently into neurons and also into macrophages without observing deleterious effects of the mutations on the differentiation process. Using our system as a platform to test chemical compounds capable of increasing acid-β-glucosidase activity, we confirm that two nojirimycin analogues can rescue protein levels and enzyme activity in the cells affected by the disease.
منابع مشابه
A New Glucocerebrosidase Chaperone Reduces α-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism.
UNLABELLED Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human p...
متن کاملAltered Differentiation Potential of Gaucher’s Disease iPSC Neuronal Progenitors due to Wnt/β-Catenin Downregulation
Gaucher's disease (GD) is an autosomal recessive disorder caused by mutations in the GBA1 gene, which encodes acid β-glucocerebrosidase (GCase). Severe GBA1 mutations cause neuropathology that manifests soon after birth, suggesting that GCase deficiency interferes with neuronal development. We found that neuronopathic GD induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NP...
متن کاملInduced Pluripotent Stem Cell Modeling of Gaucher’s Disease: What Have We Learned?
Gaucher's disease (GD) is the most frequently inherited lysosomal storage disease, presenting both visceral and neurologic symptoms. Mutations in acid β-glucocerebrosidase disrupt the sphingolipid catabolic pathway promoting glucosylceramide (GlcCer) accumulation in lysosomes. Current treatment options are enzyme replacement therapy (ERT) and substrate reduction therapy (SRT). However, neither ...
متن کاملProperties of Neurons Derived from Induced Pluripotent Stem Cells of Gaucher Disease Type 2 Patient Fibroblasts: Potential Role in Neuropathology
Gaucher disease (GD) is caused by insufficient activity of acid β-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) wh...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2013